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Abstract. This paper discusses two equations with the conditional Painlevé property. The
usefulness of the singular manifold method as a tool for determining the non-classical symmetries
that reduce the equations to ordinary differential equations with the Painlevé property is
confirmed once more. The examples considered in this paper are particularly interesting because
they have recently been proposed by other authors as counterexamples of the conjecture made
by the authors that the singular manifold method allows us to identify non-classical symmetries.
We demonstrate here that the conjecture still holds for these two cases as well. A detailed study
of the way of solving this apparent contradiction is offered.

1. Introduction

In 1995 [10] the present authors developed a method for identifying the non-classical
symmetries of partial differential equations (PDEs), using the Painlevé analysis as a tool [19]
and, more precisely, the singular manifold method (SMM) based on the Painlevé property
(PP) [13, 17]. This paper was the continuation of two previous papers [8, 9] by one of us.
In it, we studied six different PDEs. Four of them were equations with the PP while the
other two considered there were equations with only the conditional PP. The results obtained
for these equations can be summarized as the following conjecture: ‘The SMM allows one
to identify the symmetries that reduce the original equation to an ODE with the Painlev´e
property’. Obviously, the combination of this statement with the Ablowitz, Ramani and
Segur (ARS) conjecture [1] means that for equations with the PP, the SMM should identify
all the non-classical symmetries. Nevertheless, for equations with the conditional PP, the
SMM is only able to identify the symmetries for which the associated reduced ordinary
differential equations (ODEs) are of Painlevé type.

Recently, Tanriver and Roy Choudhury [16] have applied our method to a family
of Cahn–Hilliard equations. According to these authors, their results are apparently in
contradiction with ours because (according to them) for these equations the symmetries
obtained using the SMM are different from those obtained by the group theoretical non-
classical method [14].

If the conclusions of Tanriver and Choudhury [16] were correct, the Cahn–Hilliard
equations would be a counterexample that would cast some doubt on the correctness of our
conjecture [10].

In the following sections we shall prove that [16] is incomplete and, consequently, that
the conclusions of those authors are flawed. When the exercise is done correctly, the results
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show that the Cahn–Hilliard equations are a further two good examples to be added to the
list reported in [10].

2. Cahn–Hilliard equation for m = 1 and one spatial variable

This equation can be written as [16]

ut +
(
kuxx − u

2

2

)
xx

= 0. (2.1)

2.1. Non-classical method

The infinitesimal form of the Lie transformation of a PDE with two independent variables
x and t can be written as

x ′ = x + εξ(x, t, u)+O(ε2)

t ′ = t + ετ(x, t, u)+O(ε2)

u′ = u+ εη(x, t, u)+O(ε2)

(2.2)

such that the associated Lie algebra contains vector fields of the form

v = ξ ∂
∂x
+ τ ∂

∂t
+ η ∂

∂u
. (2.3)

The non-classical method [2, 3, 14, 15, 11] requires that the symmetries should obey the
invariant surface condition,

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u) (2.4)

associated with the vector fieldv.
The algorithmic method used to determine the equations to be satisfied by the

infinitesimalsξ , η andτ is well known [4, 12, 7]. Nevertheless, as was mentioned several
times in [10], the non-classical method requires that the symmetries withτ = 0 should be
determined separately from those withτ 6= 0 [5, 6]. Furthermore, there is no restriction in
the use of the normalizationξ = 1 whenτ = 0. In the same way,τ could be normalized
to 1 whenτ 6= 0 [5, 6].

2.1.1. Symmetries withτ = 0. In this case, we can chooseξ = 1 without restriction,
which means that the invariant surface condition isη = ux .

The equation forη is

kηxxxx + 4kηηxxxu + 6kη2ηxxuu + 4kη3ηxuuu + kη4ηuuuu + 6kηxηxxu + 6kηηuηxxu
+12kη2ηuηxuu + 12kηηxηxuu + 6kη2ηxηuuu + 6kη3ηuηuuu + 8kηη2

xu

+4kηxuηxx + 4kη3η2
uu + 3kηuuη

2
x + 7kη2η2

uηuu + 4kηη2
uηxu

+12kη2ηxuηuu + 4kηuηxηxu + 10kηηxηuηuu + 4kηηuuηxx − uη2ηuu

−2uηηxu − uηxx − 2η2ηu − 3ηηx + ηt = 0. (2.5)

This equation was obtained by using thesymmgrp.max MACSYMA package [7]. The
evident complexity of this equation could be the reason why some authors [16] have
neglected these symmetries. This complexity appears for manyτ = 0 symmetries [5].
Nevertheless, as will be seen later on, one of the advantages of the SMM is that it provides
non-trivial solutions for (2.5).
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2.1.2. Symmetries withτ 6= 0. Calculation of these symmetries [7, 16] yields

τ = 4αt + γ
ξ = αx + β
η = −2αu.

(2.6)

It is not difficult (see the appendix) to check that the reduced ODEs associated with
symmetries (2.6) have the PP only in the following case

α = 0 β = 0 H⇒ τ = 1 ξ = 0 η = 0 (2.7)

whereγ has been normalized to 1.

2.2. Singular manifold method

Equation (2.1) does not have the PP. However, it is possible to use the SMM to determine
particular solutions of (2.1) single-valued on the initial conditions. For such solutions, the
equation has the conditional PP. To apply the SMM [17, 19] we should look for solutions
of (2.1) in the following form:

u =
α∑
j=0

ujφ
j−α (2.8)

whereα andu0 are respectively the leading index and the leading term andφ is the singular
manifold that allows us to obtain truncated solutions such as in (2.8). Substitution of (2.8)
in (2.1) provides two different expansions that depend on whether the singular manifold is
characteristic (φx = 0) or not (φx 6= 0). We shall explore both cases separately.

2.2.1. Non-characteristic manifold.If φx 6= 0, the expansion (2.8) is [16]

u′ = u− 12k

(
φx

φ

)
x

(2.9)

whereu is a solution of (2.1) that could be expressed in terms of the singular manifold as

u = 4ks + 3kv2 (2.10)

with v, s andw defined as

v = φxx

φx

s = vx − v
2

2

w = φt

φx
.

(2.11)

It is worth noting thatw and s are homographic invariants as opposed tov, which is not
invariant under homographic transformations.

The equations of the singular manifold are the equations satisfied by the homographic
invariantsw ands and are

w = 0

sx = st = 0.
(2.12)

The derivatives of (2.10) can be written in terms of the singular manifold as

ux = v(u+ 2ks)

ut = 0
(2.13)
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where, according to [10],v2 has been removed by using (2.10). Substitution of (2.13) in
the invariant surface condition (2.4) is

v(u+ 2ks)ξ = η. (2.14)

The theory presented in [10] requires that the invariant surface condition should only depend
on homographic invariants. The infinitesimals must be determined in order to avoid the
presence ofv in (2.14). The only possibility of eliminating the dependence onv of the
invariant surface condition is thatξ = 0. This means that the only non-identically zero
symmetry is

τ = 1 ξ = 0 η = 0 (2.15)

which is the non-classical symmetry (2.7).

2.2.2. Characteristic manifold. Whenφx = 0, the truncated expansion (2.8) is [18]

u′ = u− 1
6(x + x0)

2φt

φ

whereu is a solution of (2.1) whose expression in terms of the singular manifold is

u = (x + x0)
2

12
q(t) (2.16)

and whereq(t) has been defined as

q(t) = φtt

φt
. (2.17)

Notice that for characteristic manifolds [10] the only homographic invariant that we can
construct is the Schwartzian derivative with respect tot , defined as

h = qt − q
2

2
(2.18)

in terms of which, the singular manifold equations are

h = 0. (2.19)

The derivatives of (2.16) are

ux = q

6
(x + x0)

ut = qt

12
(x + x0)

2.
(2.20)

(2.16) has to be used to removeq, or (x + x0)
2. The result is

ux = 2u

(x + x0)

ut = qu

2
.

(2.21)

Sinceq is not homographic invariant, we require thatτ should be equal to zero in order
to avoid its presence in the invariant surface condition (2.4). The infinitesimals are in such
a case

τ = 0

ξ = 1

η = 2u

(x + x0)
.

(2.22)

It is easy to check that this symmetry satisfies equation (2.5) for the non-classical
symmetries withτ = 0.
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2.3. Comparison of the non-classical method and SMM

The SMM has allowed us to determine two different symmetries that are, respectively,
(2.15) and (2.22). The former is the particular case of the non-classical symmetry (2.7) for
which the associated reduction leads to an ODE with PP. The latter is a solution of equation
(2.5) for the non-classical symmetries withτ = 0.

These results are in concordance with [10]. As we stated in the last example of this
reference ‘[The symmetry identified by the SMM]. . . is the only one in which the associated
similarity reduction leads to an ODE of Painlev´e type’.

3. Cahn–Hilliard equation for m = 2 and one spatial variable

This equation can be written as [16]

ut +
(
kuxx − u

3

3

)
xx

= 0. (3.1)

3.1. Non-classical method

In order to properly apply the non-classical method to equation (3.1), we consider two
different cases separately.

3.1.1. Symmetries withτ = 0. If τ = 0, we can setξ = 1 with no loss of generality. The
resulting equation forη obtained using [7] is

4kηηxxxu + kηxxxx + kη4ηuuuu + 4kη3ηxuuu + 6kη2ηxxuu + 6kηxηxxu + 6kη2ηxηuuu

+12kηηxηxuu + 6kη3ηuηuuu + 12kη2ηuηxuu + 6kηηuηxxu − u2ηxx

−u2η2ηuu − 2u2ηηxu + 4kηxxηxu + 3kη2
xηuu + 4kη3η2

uu + 8kηη2
xu

+4kηηxxηuu + 10kηηxηuηuu + 4kηxηuηxu + 12kη2ηxuηuu + 7kη2η2
uηuu

+4kηη2
uηxu − 6uηηx − 4uη2ηu − 2η3+ ηt = 0. (3.2)

3.1.2. Symmetries withτ 6= 0. Solving the system of determining equations obtained using
symmgrp.max [7] yields [16]

τ = 4αt + γ
ξ = αx + β
η = −αu.

(3.3)

It can be shown (see the appendix) that the reduced equations associated with the
symmetries with infinitesimal generators (3.3) only have the PP for the special choice of
the parametersα = 0 andβ = 0. In this case the infinitesimals are simply

τ = 1 ξ = 0 η = 0 (3.4)

where we have setγ = 1 with no loss of generality.
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3.2. The singular manifold method

Equation (3.1) does not have the PP as in the previous equation (2.1). However, it is
possible, using the SMM, to search for particular solutions of (3.1) that are single-valued
in the initial conditions. We therefore seek solutions of the form [17, 16]

u′ =
α∑
j=0

ujφ
j−α. (3.5)

The leading index is an integer only when the singular manifoldφ is non-characteristic
(φx 6= 0), in which case expansion (3.5) takes the form [16] of

u′ = u+
√

6k

(
φx

φ

)
(3.6)

whereu is a solution of (3.1) that is expressed in terms of the singular manifoldφ as

u = −
√

6k

2
v. (3.7)

Furthermore, the singular manifold equations that relatew ands are

w = 0

s = 0.
(3.8)

The next step is to compute the derivatives of (3.7) in terms of the singular manifold. The
result is

ux = − 1√
6k
u2

ut = 0
(3.9)

where [10]v2 has been eliminated using (3.8). Substitution of (3.9) in the invariant surface
condition gives

− 1√
6k
u2ξ = η. (3.10)

According to equation (3.10) we must consider two cases.
• ξ = 0. In this caseη = 0 and the only nontrivial symmetry we obtain is

τ = 1 ξ = 0 η = 0 (3.11)

which corresponds to the non-classical symmetry (3.4).
• ξ = 1. In this case equation (3.10) is the invariant surface condition associated with

a symmetry withτ = 0. The infinitesimal generators then take the form

τ = 0 ξ = 1 η = − 1√
6k
u2. (3.12)

It is trivial to check that (3.12) satisfies equation (3.2) for the non-classical symmetries
with τ = 0.
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4. Conclusions

• Two equations with the conditional PP have been considered. Here we show that both
of them satisfy the conjecture established in [10] to the effect that the SMM allows us to
identify all the non-classical symmetries that reduce the equation to an ODE with the PP.
• Our results do not agree with those found recently by Tanriver and Chowdhury [16].

This is because, although these authors have tried to follow the method discussed in [10],
they fail to consider some of the aspects that were clearly stated in this reference. Such
omissions lead them to wrong conclusions and can be listed as follows.

(1) They do not take into account in both examples that computing the non-classical
symmetries of an equation requires the consideration of two different cases separately,
namelyτ = 0 andτ 6= 0. Only symmetries withτ 6= 0 were evaluated in [16]. However,
as we have shown in this paper, some of the symmetries of the solutions found using the
singular manifold method are symmetries withτ = 0.

(2) On applying the singular manifold method, they do not consider the case in which
the singular manifold is characteristic (φx = 0). Solutions evaluated on the basis of
characteristic manifolds turn out to be relevant for equation (2.1), just as was the case
of some of the examples analysed in [10].

(3) The authors of [16] should submit [10] to careful scrutiny. In the introduction to
[10] the following explicit statement was made.

‘We show how for PDE with Painlev´e property, these symmetries are precisely
those obtained through the non-classical method. . .Finally, for equations with the
conditional Painlev´e property, the SMM allows one to identify the symmetries that
reduce the original equation to an ODE with the Painlev´e property.’

According to the last sentence, and since equations (2.1) and (3.1) have the conditional
PP, the second part of the sentence applies for both of them. As has been shown for these
examples (as well as was shown for example 6 in [10]), the non-classical symmetries that
cannot be recovered through the SMM are precisely those that reduce the equation to ODEs
that are not of Painlev́e type.
•We believe that we have shown here that both equations, (2.1) and (3.1), have not been

interpreted correctly in [16]. Careful analysis shows that the procedure developed in [10]
merely provides two more examples that confirm the relationship between the non-classical
method and the SMM.
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Appendix

A.1. Non-classical reductions for symmetries (2.6)

From the non-classical infinitesimal generators (2.6) we obtain two different reductions.
• If α 6= 0

u = α2

(αx + β)2F(z)
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z = (αx + β)4
a3(4αt + γ )

whereF(z) must satisfy the ODE:

4k[32z4Fzzzz + 80z3Fzzz + 30z2Fzz − 15zFz + 15F ]

−8z2FFzz − 8z2F 2
z + 10zFFz − 2z2Fz − 5F 2 = 0

which is not of Painlev́e type.
• If α = 0

u = F(z)
z = γ x − βt

whereF(z) is a solution of

−βFz + kγ 4Fzzzz − γ 2(FFzz + F 2
z ) = 0.

It can be easily shown that this equation is not of Painlevé type unlessβ = 0.

A.2. Non-classical reductions for symmetries (3.3)

Similarly, we obtain two different reductions from the symmetry (3.3).
• If α 6= 0

u = α

(αx + β)F (z)

z = (αx + β)4
a3(4αt + γ )

whereF(z) must satisfy

4k[64z4Fzzzz + 224z3Fzzz + 108z2Fzz − 6zFz + 6F ]

−16z2F 2Fzz + 12zF 2F2− z2Fz − 32z2FFz − 4F 3 = 0

which is not of Painlev́e type.
• If α = 0

u = F(z)
z = γ x − βt

whereF(z) is a solution of

−βFz + kγ 4Fzzzz − γ 2(F 2Fzz + 2FF 2
z ) = 0.

This equation is again of Painlevé type only whenβ = 0.
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